Equilibrium Chemical Composition and Thermodynamic Properties of Air-Carbon Mixtures at High Temperatures

HAROLD Y. WACHMAN, MILTON J. LINEVSKY, and RUTH F. LYON Aerosciences Laboratory, Missile & Space Vehicle Department, General Electric Co., Philadelphia, Pa.

THE RECENT need for laboratory simulation of high speed flight and atmospheric re-entry has created interest in the high temperature gas flow produced by a constricted electric arc (1, 7, 9). When the arc is operated with graphite electrodes and with air as the working fluid, the flow is contaminated with quantities of carbon. Since knowledge of the chemical and thermodynamic properties of the flow is important in simulation, the properties of air-carbon mixtures must be determined.

In the calculations reported here, the constituents of the mixtures are assumed to be N, O, A, C, N₂, O₂, C₂, NO, CO, CN, and C₃. Calculations have been made of the free energy, enthalpy, entropy, average molecular weights, and mole fractions for equilibrium mixtures containing 1 to 30% carbon by weight in the temperature range 4000° to $10,000^{\circ}$ K. and pressures in the range 0.1 to 100 atm. Only representative portions of the data are reported in this article.

PROCEDURE

The free energy F of any n component, ideal gas system at temperature T is given by

$$F = \sum x_i F_i^0 + RT \sum x_i \ln p_i \tag{1}$$

where x_i is the number of moles, p_i the partial pressure, and F_i^0 the standard molar free energy of the i^{\pm} constituent. The equilibrium composition of the mixture consists of that set of nonnegative values x_i which minimizes the free energy and satisfies the mass balance restraints:

$$\sum_{i=1}^{n} A_{ij} x_i = B_j \qquad (j = 1, \ldots, m)$$
(2)

where A_{ij} is the number of atoms of elements j in a molecule of component i, and B_j is the total number of gram atomic weights of j originally present in the mixture.

A method reported by White, Johnson, and Danzig (10) was used to linearize the free energy equation and establish an iterative linear programming procedure to compute the x_i and minimize F. The initial basic feasible solution was taken as

$$x_i = B_i$$
 $(i = j = 1, ..., m),$
 $x_i = 0$ $(i > m)$

The only modification of the method as described by White and others (10) was in the halving of the "alpha grid," because successive values of $(x_i/\sum x_i)$ did not always stay within the range set up by the previous cycle.

Throughout the iterations the mole fractions of species present in trace amounts assumed a zero value. The linear programming procedure was used until four decimal place accuracy in $(x_i/\sum x_i)$ was obtained. The nonzero values of $(x_i/\sum x_i)$ were then used in a set of chemical equilibrium equations involving each "zero level" component to obtain values for mole fractions of the trace components. Equilibrium constants were calculated using the free energy functions (Table III) discussed below.

The accuracy of all mole fraction values was then improved by setting

$$\left(\frac{\mathbf{x}_i}{\sum \mathbf{x}_i}\right)$$
 improved = $\left(\frac{\mathbf{x}_i}{\sum \mathbf{x}_i}\right) + \epsilon_i$ (3)

$$(\sum x_i)_{\text{improved}} = (\sum x_i) + \overline{\epsilon}$$
(4)

and using these equations in the chemical equilibrium equations.

Since the values of ϵ_i and $\overline{\epsilon}$ are relatively small, their products may be considered negligible. Thus the (n - m)chemical equilibrium equations were obtained as linear functions of the (n + 1) unknowns ϵ_i and $\overline{\epsilon}$. The mass balance restraints provide *m* additional equations of the form;

$$\left[\left(\sum x_{i}\right) + \overline{\epsilon}\right] \sum_{i} A_{ij} \left[\left(\frac{x_{i}}{\sum x_{i}}\right) + \epsilon_{i}\right] = B_{j} (j = 1, \dots, m)$$
(5)

Since

$$\sum_{i=1}^{n} \left(\frac{\mathbf{x}_{i}}{\sum \mathbf{x}_{i}} \right) \equiv 1 \tag{6}$$

and it is required that

$$\sum_{i=1}^{n} \left[\left(\frac{\mathbf{x}_{i}}{\sum \mathbf{x}_{i}} \right) + \epsilon_{i} \right] = 1, \tag{7}$$

the (n + 1) st equation is

$$\sum_{i=1}^{n} \epsilon_i = 0 \tag{8}$$

These (n + 1) simultaneous equations were then solved for for the unknowns ϵ_i (i = 1, ..., n) and $\overline{\epsilon}$, and the improved set of mole fraction values was obtained. This improvement process was then repeated to give the values reported in Table I. An IBM 704 computer was used for the computations.

CALCULATION

To perform the calculations, the standard molar free energy F_i^0 of each of the *i* constituents must be known. The values of the standard free energy function $(F^0/RT)_i$ and enthalpy function $(H^0/RT)_i$ of N, O, A, C, N₂, O₂, NO, and CO at temperatures of 4000° to 8000° K. given by Gilmore (2) have been used without modification. The 9000° and 10,000° K. values for these species and the 6000° to 10,000° K. values for CN and C₂ were calculated from the spectroscopic data given by Herzberg (5) using the general method described by Gilmore. The thermodynamic functions from 4000° to 6000° K. for CN were taken from Johnson (6) and for C₂ from Gordon (4). The spectroscopic data used in the calculations are reproduced in Table II. The thermodynamic functions of C₃ were calculated as discussed below for the entire temperature range.

At the suggestion of Mulliken (8) the C₃ molecule was treated as follows: The ground state was taken as ${}^{1}\Sigma$ by analogy with CO₂. The available excited states on promotion of an electron from the $1\pi_{u}$ orbital to π_{g} orbital were chosen as ${}^{1}\Sigma_{u}^{+}, {}^{1}\Delta_{u}, {}^{1}\Sigma_{u}^{-3}\Sigma_{u}^{-3}\Delta_{u}, {}^{3}\Sigma_{u}^{+}$. Similarly, on promotion of an electron from the $3\sigma_{u}$ orbital to the π_{g} orbital the excited states chosen were ${}^{1}\Pi_{u}, {}^{3}\Pi_{u}, {}^{1}\Sigma_{g}^{+}$. Since little experimental data are available concerning the energies of these states, a very rough estimate based on scaling from N₂ and CO₂ was made. The energies of the nine statistical states corresponding to the $(3\sigma_{u} \rightarrow \pi_{g})$ transition were assumed to be evenly distributed in the range 1.5 to 3.5 ev. Similarly the 16 states corresponding to the $(1\pi_{u} \rightarrow \pi_{g})$ transition were assumed to be distributed in the range 1.5 to 4.5 ev.

JOURNAL OF CHEMICAL AND ENGINEERING DATA

The values used for the moments of inertia and fundamental vibration of the C_3 molecule were taken from Glockler (3).

The thermodynamic data which were used to calculate the composition and thermodynamic properties of the mixtures are reproduced in Table III. The composition of dry room temperature air was obtained from Gilmore (2). The compositions of four air-carbon mixtures at temperatures 5000° , 6000° , 8000° , and $10,000^{\circ}$ K. and pressures of 0.1, 1.0, 10, and 100 atm. are reported in Table I. The last value in each column of Table I is the average molecular weight, \overline{M} , of the mixture. For convenience, the thermodynamic function is presented graphically as plots of temperature vs. (S/R) in Figure 1. Lines of constant density ratio (ρ/ρ_0) and constant enthalpy function (H/RT_0) are also included in the figure.

The enthalpy function (H/RT) was obtained for each

mixture from the (H^0/RT) values given in Table III using the expression

$$\sum_{i=1}^{n} x_i (H^0 / RT)_i = (H / RT)_{mix}.$$
(9)

The free energy functions $-(F/RT)_{mix.}$ were obtained from the minimization of Equation 1 and the entropy functions $(S/R)_{mix.}$ from the relation $(S/R = -F/RT + H/RT)_{mix.}$

ACKNOWLEDGMENT

The authors are indebted to S.G. Kneale for his help in formulating the computer program and to G. Vidale and F. Foshag for their continued interest and suggestions in the course of this work. In addition the aid of A. Bleeker in assembling the data is gratefully acknowledged.

(Literature Cited follows on page 460.)

	Table I. Mole Fractions of the Constituents of Air-Carbon Mixtures							
		Pressu						
Species	0.1	1	10	100				
•	Temperature: 5000° K.: Carbon Content: 5% by Wt							
N	7.928×10^{-2}	2599×10^{-2}	8.317×10^{-3}	2.657×10^{-3}				
Ö	2.289×10^{-1}	2.255×10^{-1}	1.955×10^{-1}	1.232×10^{-1}				
А	7.444×10^{-3}	7.694×10^{-3}	7.904×10^{-3}	8.247×10^{-3}				
С	4.402×10^{-4}	4.645×10^{-5}	5.508×10^{-6}	9.122×10^{-7}				
N_2	5.792×10^{-1}	6.224×10^{-1}	6.374×10^{-1}	6.508×10^{-1}				
O_2	1.083×10^{-4}	1.051×10^{-3}	7.900×10^{-3}	3.137×10^{-2}				
NO	3.971×10^{-3}	1.282×10^{-2}	3.557×10^{-2}	7.163×10^{-2}				
	1.005×10^{-1}	1.045×10^{-1}	1.074×10^{-1}	1.121×10^{-1}				
CN	2.309×10^{-9}	7.986×10^{-10}	3.031×10^{-11}	1.604×10^{-12}				
C_2	2.012×10^{-14}	2.240×10^{-15}	3.150×10^{-15}	8.640×10^{-16}				
\widetilde{M}	24.25	9.246 × 10 25.06	1.542 X 10 25.75	26.86				
	Ter	nperature: 5000° K.; Carbon C	ontent: 10% by Wt.					
Ν	7.920×10^{-2}	2.600×10^{-2}	8.312×10^{-3}	2.643×10^{-3}				
0	1.205×10^{-1}	1.171×10^{-1}	1.030×10^{-1}	6.903×10^{-2}				
Α	7.427×10^{-3}	7.667×10^{-3}	7.799×10^{-3}	7.962×10^{-3}				
С	1.748×10^{-3}	1.875×10^{-4}	2.173×10^{-5}	3.311×10^{-6}				
N_2	5.781×10^{-1}	6.227×10^{-1}	6.366×10^{-1}	6.425×10^{-1}				
O_2	3.000×10^{-3}	2.835×10^{-4}	2.192×10^{-3}	9.848×10^{-3}				
NO	2.088×10^{-3}	6.661×10^{-3}	1.873×10^{-2}	3.994×10^{-2}				
CO	2.100×10^{-1}	2.191×10^{-1}	2.233×10^{-1}	2.280×10^{-1}				
CN	9.159×10^{-8}	3.225×10^{-3}	1.195×10^{-1}	5.786×10^{-3}				
C_2	3.172×10	3.652×10^{-13}	4.903×10^{-11}	1.138×10^{-10}				
$\widetilde{\underline{M}}^{3}$	25.52 × 10	26.35	26.80	27.36				
	Ter	nperature: 5000° K.; Carbon C	ontent: 20% by Wt.					
Ν	7.307×10^{-2}	2.383×10^{-2}	7.582×10^{-3}	2.402×10^{-3}				
0	3.279×10^{-3}	5.889×10^{-4}	1.389×10^{-4}	3.947×10^{-5}				
Α	6.608×10^{-3}	6.927×10^{-3}	7.097×10^{-3}	7.177×10^{-3}				
C	8.937×10^{-2}	5.265×10^{-2}	2.289×10^{-2}	8.151×10^{-3}				
\mathbf{N}_2	4.920×10^{-1}	5.234×10^{-1}	5.297×10^{-1}	5.315×10^{-1}				
O_2	2.222×10^{-6}	7.168×10^{-9}	3.991×10^{-9}	3.220×10^{-9}				
NU	5.242×10^{-5}	3.071×10^{-3}	2.305×10^{-3}	2.074×10^{-5}				
CU	2.923×10^{-2}	3.093×10^{-1}	3.174×10^{-1}	3.210×10^{-1}				
C	4.320×10^{-5}	8.301×10^{-4}	1.148×10^{-1}	1.296×10^{-1}				
\mathbf{C}_{1}^{2}	6.232×10^{-7}	2.878×10^{-5}	0.442×10 1 107 $\sim 10^{-4}$	6.897×10^{-4}				
М	25.51	26.75	27.40	27.71				
	Ter	nperature: 5000° K.; Carbon Co	ontent: 30% by Wt.					
Ν	6.206×10^{-2}	1.967×10^{-2}	6.114×10^{-3}	1.950×10^{-3}				
0	9.589×10^{-4}	1.595×10^{-4}	3.644×10^{-5}	1.101×10^{-5}				
A	5.214×10^{-3}	5.611×10^{-3}	5.925×10^{-3}	6.130×10^{-3}				
C	2.434×10^{-1}	1.581×10^{-1}	7.307×10^{-2}	2.502×10^{-2}				
N₂ O	3.549×10^{-4}	3.564×10^{-1}	3.444×10^{-1}	3.502×10^{-1}				
U₂ NO	1.901×10^{-5}	5.257×10^{-6}	2.745×10^{-6}	2.507×10^{-10}				
CO	1.302×10^{-1}	0.002×10^{-1}	$4.8/4 \times 10^{-1}$	4.698×10^{-6}				
ČŇ	9.994×10^{-2}	2.510×10^{-1}	2.007×10 2.056 $\sim 10^{-1}$	2.749×10^{-1}				
Č,	6.153×10^{-4}	2.500×10^{-3}	5.542×10^{-3}	6.501×10^{-3}				
\overline{C}_{3}	1.331×10^{-5}	3.644×10^{-4}	3.597×10^{-3}	1.446×10^{-2}				
\overline{M}	23.10	24.86	26.25	27.16				

Tabl	le	۱. ۱	Continued

	Pressure, Atm.							
Species	0.1	1	10	100				
	Т	emperature: 6000° K.; Carbon C	ontent: 5% by Wt.					
Ν	4.055×10^{-1}	1.676×10^{-1}	5.760×10^{-2}	1.869×10^{-2}				
õ	2.110×10^{-1}	2.203×10^{-1}	2.166×10^{-1}	1.303×10^{-1}				
Ă	5.987×10^{-3}	7.079×10^{-3}	7593×10^{-3}	7.928×10^{-3}				
C	2.301×10^{-2}	3.589×10^{-3}	4.095×10^{-4}	5.191×10^{-5}				
N_2	2.947×10^{-1}	5.032×10^{-1}	5.947×10^{-1}	6.262×10^{-1}				
O_2	1.158×10^{-5}	1.262×10^{-4}	1.220×10^{-3}	8.397×10^{-3}				
NO	1.310×10^{-3}	5.650×10^{-3}	1.909×10^{-2}	5.140×10^{-2}				
CO	5.597×10^{-2}	9.111×10^{-2}	1.022×10^{-1}	1.075×10^{-1}				
CN	2.408×10^{-3}	1.552×10^{-3}	6.087×10^{-4}	2.504×10^{-4}				
C_2	2.027×10^{-6}	4.929×10^{-7}	6.419×10^{-8}	1.031×10^{-8}				
$\underline{\mathbf{C}}_{3}$	7.608×10^{-11}	2.885×10^{-11}	4.287×10^{-12}	8.732×10^{-13}				
М	19.50	23.06	24.73	25.82				
	Te	emperature: 6000° K.; Carbon Co	ontent: 10% by Wt.					
N	3.946×10^{-1}	1.663×10^{-1}	5.756×10^{-2}	1.869×10^{-2}				
0	1.549×10^{-1}	1.274×10^{-1}	1.150×10^{-1}	9.507×10^{-2}				
Α	5.754×10^{-3}	6.994×10^{-3}	$7.542 \times 10^{+3}$	7.788×10^{-3}				
С	5.708×10^{-2}	1.243×10^{-2}	1.601×10^{-3}	2.026×10^{-4}				
N_2	2.790×10^{-1}	4.957×10^{-1}	5.937×10^{-1}	6.258×10^{-1}				
O_2	6.240×10^{-6}	4.223×10^{-5}	3.438×10^{-4}	2.351×10^{-3}				
NO	9.355×10^{-4}	3.243×10^{-3}	1.013×10^{-2}	2.719×10^{-2}				
CO	1.019×10^{-1}	1.826×10^{-1}	2.121×10^{-1}	2.219×10^{-1}				
CN	5.813×10^{-3}	5.336×10^{-3}	2.377×10^{-3}	9.768×10^{-4}				
\mathbf{C}_2	1.247×10^{-5}	5.917×10^{-6}	9.805×10^{-7}	1.570×10^{-7}				
$\underline{\mathbf{C}}_{3}$	1.161×10^{-9}	1.200×10^{-9}	2.560×10^{-10}	5.187×10^{-11}				
М	19.77	24.04	25.92	26.76				
	Τe	emperature: 6000° K.; Carbon Co	ontent: 20% by Wt.					
N	3.599×10^{-1}	1.530×10^{-1}	5.281×10^{-2}	1.709×10^{-2}				
0	7.843×10^{-2}	2.165×10^{-2}	4.529×10^{-3}	1.097×10^{-3}				
Α	5.041×10^{-3}	6.207×10^{-3}	6.792×10^{-3}	7.051×10^{-3}				
С	1.623×10^{-1}	1.024×10^{-1}	5.728×10^{-2}	2.485×10^{-2}				
N_2	2.321×10^{-1}	4.198×10^{-1}	4.999×10^{-1}	5.236×10^{-1}				
O_2	1.600×10^{-6}	1.219×10^{-6}	5.334×10^{-7}	3.123×10^{-7}				
NO	4.319×10^{-4}	5.070×10^{-4}	3.661×10^{-4}	2.870×10^{-4}				
CO	1.467×10^{-1}	2.555×10^{-1}	2.990×10^{-1}	3.141×10^{-1}				
CN	1.507×10^{-2}	4.046×10^{-2}	7.807×10^{-2}	1.096×10^{-1}				
C_2	1.008×10^{-4}	4.016×10^{-4}	1.256×10^{-3}	2.363×10^{-3}				
$\underline{\mathbf{C}}_{3}$	2.670×10^{-8}	6.710×10^{-7}	1.173×10^{-5}	9.576×10^{-5}				
М	19.46	23.96	26.22	27.22				
	Τe	emperature: 6000° K.; Carbon Co	ontent: 30% by Wt.					
Ν	3.151×10^{-1}	1.311×10^{-1}	4.406×10^{-2}	1.403×10^{-2}				
0	4.262×10^{-2}	7.560×10^{-3}	1.325×10^{-3}	3.113×10^{-4}				
Α	4.156×10^{-3}	4.970×10^{-3}	5.522×10^{-3}	5.896×10^{-3}				
С	2.923×10^{-1}	2.470×10^{-1}	1.613×10^{-1}	7.361×10^{-2}				
N_2	1.779×10^{-1}	3.081×10^{-1}	3.479×10^{-1}	3.527×10^{-1}				
O_2	4.724×10^{-7}	1.486×10^{-7}	4.564×10^{-8}	2.520×10^{-8}				
NO	2.055×10^{-4}	1.517×10^{-4}	8.933×10^{-3}	6.683×10^{-5}				
CO	1.436×10^{-1}	2.152×10^{-1}	2.462×10^{-1}	2.641×10^{-1}				
CN	2.377×10^{-2}	8.358×10^{-2}	1.834×10^{-1}	2.665×10^{-1}				
C_2	3.271×10^{-4}	2.335×10^{-3}	9.957×10^{-3}	2.074×10^{-2}				
$\frac{C_3}{M}$	1.560×10^{-1}	9.409×10^{-3}	2.619×10^{-7}	2.490×10^{-3}				
111	10.41	22.02	24.46	26.12				
	Т	emperature: 8000° K.; Carbon C	ontent: $5^{e_\ell}_{e}$ by Wt.					
N	7.297×10^{-1}	6.729×10^{-1}	4.531×10^{-1}	1.989×10^{-1}				
0	1.989×10^{-1}	2.046×10^{-1}	2.167×10^{-1}	2.105×10^{-1}				
A	4.451×10^{-3}	4.688×10^{-3}	5.692×10^{-3}	6.960×10^{-3}				
C	5.983×10^{-2}	5.720×10^{-2}	3.692×10^{-2}	8.936×10^{-3}				
\mathbf{N}_2	6.278×10^{-3}	5.339×10^{-2}	2.421×10^{-1}	4.664×10^{-1}				
O_2	7.523×10^{-7}	7.954×10^{-6}	8.927×10^{-5}	8.426×10^{-4}				
NU	7.557×10^{-5}	7.166×10^{-4}	5.112×10^{-3}	2.180×10^{-2}				
	4.932×10^{-4}	4.849×10^{-5}	3.315×10^{-2}	7.796×10^{-2}				
CN	1.888 × 10 °	1.664×10^{-5}	7.233×10^{-6}	7.685×10^{-5}				
C_2	1.100×10^{-12}	0 400 ∽ 10 -10 1.078 X 10 -	4.492×10^{-9}	2.032 X 10° 0.059 V 10°				
$\frac{\mathbf{U}_{3}}{\mathbf{M}}$	14 50	2.420 X 10 15.97	0.029 X 10 18 54	9.200 X 10 - 99.67				
171	11.00	10.27	10.01	42.07				

Table I. Continued

		Pressur		
Species	0.1	1	10	100
	Ten	nperature: 8000° K.: Carbon Co	ontent: 10% by Wt.	
N	6.846×10^{-1}	6.343×10^{-1}	4.349×10^{-1}	1.951×10^{-1}
0	1.860×10^{-1}	1.874×10^{-1}	1.785×10^{-1}	1.410×10^{-1}
A	4.175×10^{-3}	4.395×10^{-3}	5.397×10^{-3}	6.766×10^{-3}
	1.183×10^{-3}	1.139×10^{-1}	7.999×10^{-1}	2.516×10^{-1}
O_2	6.579×10^{-7}	4.743×10^{-6}	6.055×10^{-5}	4.480×10^{-4} 3.780×10^{-4}
NO	6.630×10^{-5}	6.189×10^{-4}	4.041×10^{-3}	1.432×10^{-2}
CO	9.121×10^{-4}	8.843×10^{-3}	5.916×10^{-2}	1.470×10^{-1}
CN	3.503×10^{-4}	3.123×10^{-3}	1.504×10^{-2}	2.122×10^{-4}
	4.614×10^{-11}	4.273×10^{-9}	2.109×10^{-8}	2.087×10^{-7}
$\frac{\Box_3}{M}$	14.35	15.10	18.55	23.25
	Ten	nperature: 8000° K.: Carbon C	ontent: 20% by Wt.	
N	5.969×10^{-1}	5.575×10^{-1}	3.912×10^{-1}	1.780×10^{-1}
Ö	1.612×10^{-1}	1.560×10^{-1}	1.191×10^{-1}	5.312×10^{-2}
Α	3.639×10^{-3}	3.823×10^{-3}	4.714×10^{-3}	6.027×10^{-3}
C	2.319×10^{-1}	2.256×10^{-1}	1.811×10^{-1}	9.610×10^{-2}
	4.200×10^{-7}	3.664×10^{-6}	1.804×10^{-5}	3.734×10^{-5}
	4.940×10^{-5}	4.527×10^{-4}	2.425×10^{-3}	4.921×10^{-3}
CO	1.549×10^{-3}	1.458×10^{-2}	8.936×10^{-2}	2.115×10^{-1}
CN	5.985×10^{-4}	5.437×10^{-3}	3.063×10^{-2}	7.395×10^{-2}
C_2	1.772×10^{-5}	1.677×10^{-4}	1.081×10^{-3}	3.044×10^{-3}
$\frac{C_3}{M}$	1.618×10^{-1} 14.05	1.489×10^{-5} 14.76	7.706×10^{-1}	1.151×10^{-1} 23.27
	Ten	perature: 8000° K.; Carbon Co	ontent: 30% by Wt.	
N	5.124×10^{-1}	4.816×10^{-1}	3.418×10^{-1}	1.528×10^{-1}
A	3.106×10^{-3}	3.251×10^{-3}	3.958×10^{-3}	5.003×10^{-3}
C	3.413×10^{-1}	3.347×10^{-1}	2.929×10^{-1}	1.984×10^{-1}
N_2	3.096×10^{-3}	2.734×10^{-2}	1.377×10^{-1}	2.753×10^{-1}
O_2	3.586×10^{-7}	3.103×10^{-6}	1.203×10^{-3}	1.106×10^{-3}
	3.004×10^{-3}	3.203×10^{-2}	1.415×10^{-2}	1.919×10^{-1}
CN	7.562×10^{-4}	6.969×10^{-3}	4.329×10^{-2}	1.303×10^{-1} 1.311×10^{-1}
C_2	3.840×10^{-5}	3.692×10^{-4}	2.829×10^{-3}	1.298×10^{-2}
$\underline{\mathbf{C}}_{3}$	5.159×10^{-10}	4.864×10^{-8}	3.262×10^{-6}	1.014×10^{-4}
М	13.76	14.40	17.54	22.16
	Tem	perature: 10,000° K.; Carbon (Content: 5% by Wt.	
N	7.370×10^{-1}	7.338×10^{-1}	7.043×10^{-1}	5.433×10^{-1}
A	4.421×10^{-3}	4435×10^{-3}	4.557×10^{-3}	2.134×10^{-3}
Ċ	6.008×10^{-2}	5.996×10^{-2}	5.869×10^{222}	4.728×10^{-2}
N_2	2.928×10^{-4}	2.903×10^{-3}	2.674×10^{-2}	1.591×10^{-1}
O_2	1.564×10^{-7}	1.569×10^{-6}	1.618×10^{-5}	1.814×10^{-4}
NU CO	9.319×10^{-5}	9.295×10^{-6}	9.059×10^{-3}	7.399×10^{-3} 1.474 $\times 10^{-2}$
CN	1.608×10^{-5}	1.735×10^{-4}	1.729×10^{-3}	1.474×10^{-3}
\tilde{C}_2	1.772×10^{-7}	1.765×10^{-6}	1.691×10^{-5}	1.098×10^{-4}
\underline{C}_3	7.440×10^{-14}	7.394×10^{-12}	6.934×10^{-10}	3.625×10^{-8}
Μ	14.40	14.45	14.84	17.15
	Tem	perature: 10,000° K.; Carbon C	ontent: 10% by Wt.	
N	6.910×10^{-1}	6.881×10^{-1}	6.617×10^{-1}	5.153×10^{-1}
U A	1.858×10^{-1}	1.859×10^{-1}	1.874×10^{-1}	1.888×10^{-1}
A C	4.148 \times 10 $^{\circ}$ 1 187 \checkmark 10 ⁻¹	4.160×10^{-5} 1.185×10^{-1}	4.273×10^{-3}	4.953×10^{-3}
\widetilde{N}_2	2.574×10^{-4}	2.553×10^{-3}	2.360×10^{-2}	1.432×10^{-1}
O_2	1.374×10^{-7}	1.377×10^{-6}	1.399×10^{-5}	1.420×10^{-4}
NO	8.191×10^{-6}	8.165×10^{-5}	7.913×10^{-4}	6.208×10^{-3}
CU	3.223×10^{-6}	3.220×10^{-4}	3.184×10^{-3}	2.658×10^{-2}
	6.924×10^{-7}	2.502×10^{-6}	2.790×10^{-5}	1.003×10^{-4}
\mathbf{C}_{3}	5.744×10^{-13}	5.712×10^{-11}	5.395×10^{-9}	3.069×10^{-7}
Μ	14.25	14.29	14.68	17.02

		Table I. Continu	ed					
		Pressure, Atm.						
Species	0.1	1	10	100				
	Tem	perature: 10,000° K.; Carbon C	ontent: 20% by Wt.					
Ν	6.018×10^{-1}	5.995×10^{-1}	5.781×10^{-1}	4.568×10^{-1}				
Ō	1.617×10^{-1}	1.617×10^{-1}	1.605×10^{-1}	1.463×10^{-1}				
Ā	3.617×10^{-3}	3.627×10^{-3}	3.720×10^{-3}	4.318×10^{-3}				
С	2.325×10^{-1}	2.322×10^{-1}	2.286×10^{-1}	1.985×10^{-1}				
N_2	1.953×10^{-4}	1.938×10^{-3}	1.802×10^{-2}	1.125×10^{-1}				
O_2	1.042×10^{-7}	1.041×10^{-6}	1.026×10^{-5}	8.526×10^{-5}				
NO	6.211×10^{-6}	6.184×10^{-5}	5.920×10^{-4}	4.265×10^{-3}				
CO	5.495×10^{-5}	5.484×10^{-4}	5.361×10^{-3}	4.243×10^{-2}				
CN	5.082×10^{-5}	5.055×10^{-4}	4.801×10^{-3}	3.293×10^{-2}				
C_2	2.655×10^{-6}	2.647×10^{-5}	2.567×10^{-4}	1.935×10^{-3}				
C_3	4.313×10^{-12}	4.293×10^{-10}	4.100×10^{-8}	2.683×10^{-6}				
\overline{M}	13.96	14.00	14.36	16.67				
	Tem	perature: 10,000° K.; Carbon (Content: 30% by Wt.					
N	5.161 \times 10 ⁻¹	5.143×10^{-1}	4.972×10^{-1}	3.963×10^{-1}				
0	1.385×10^{-1}	1.382×10^{-1}	1.352×10^{-1}	1.117×10^{-1}				
Α	3.089×10^{-3}	3.097×10^{-3}	3.172×10^{-3}	3.660×10^{-3}				
С	3.420×10^{-1}	3.416×10^{-1}	3.374×10^{-1}	3.032×10^{-1}				
N_2	1.436×10^{-4}	1.426×10^{-3}	1.333×10^{-2}	8.465×10^{-2}				
O2	7.636×10^{-8}	7.603×10^{-7}	7.274×10^{-6}	4.972×10^{-5}				
NO	4.561×10^{-6}	4.535×10^{-5}	4.288×10^{-4}	2.825×10^{-3}				
CO	6.919×10^{-5}	6.896×10^{-4}	6.663×10^{-3}	4.950×10^{-2}				
CN	6.411×10^{-5}	6.381×10^{-4}	6.093×10^{-3}	4.364×10^{-2}				
\mathbf{C}_2	5.744×10^{-6}	5.730×10^{-5}	5.591×10^{-4}	4.515×10^{-3}				
C₃	1.372×10^{-11}	1.368×10^{-9}	1.318×10^{-7}	9.564×10^{-6}				
М	13.69	13.72	14.05	16.22				

Table II. Spectroscopic Data

- N: ${}^{4}S_{3/2} {}^{2}D_{5/2} {}^{2}D_{3/2} {}^{2}P_{3/2, 1/2} {}^{4}P_{1/2, 3/2, 5/2}$ O: ${}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0} {}^{1}D_{2} {}^{1}D_{2} {}^{1}S_{0}$
- $\begin{array}{cccc} O: & 1 & 2, & 2, \\ A: & {}^{1}S_{0} \\ C: & {}^{3}P_{0}; {}^{3}P_{1}; {}^{3}P_{2}; {}^{1}D_{2}; {}^{1}S_{0}; {}^{5}S_{2}; {}^{3}P_{0,1,2} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$
- $\begin{array}{cccc} N_{2}: & X^{1}\Sigma_{\mathfrak{s}}^{+}, A\Sigma_{\mathfrak{s}}^{+} \\ O_{2}: & X^{3}\Sigma_{\mathfrak{s}}^{-}, a^{1}\Delta_{\mathfrak{s}}; {}^{1}\Sigma_{\mathfrak{s}}^{+}, {}^{3}\Sigma_{\mathfrak{s}}^{+} \end{array}$

 $X \left\{ \begin{array}{c} {}^{2}\Pi_{3/2} \\ {}^{2}\Pi_{1/2} \end{array} \right\}$ $^{2}\Pi_{3}^{3/2}; A^{2}\Sigma^{+}$ NO:

- CO: $X^{1}\Sigma^{+}$; $a^{3}\Pi$, CN: $X^{2}\Sigma^{+}$; $A^{2}\Pi_{i}$; $B^{2}\Sigma^{+}$ C₂: $X^{3}\Pi_{u}$; $A^{3}\Pi_{s}$; $a^{1}\Sigma_{s}^{*a}$; $b^{1}\Pi_{u}$; $c^{1}\Pi_{s}$; $B^{3}\Pi_{s}$
- C₃: See text.
- ^aExcitation energy assumed 5300 cm.⁻¹.

LITERATURE CITED

- (1)
- Finkelnburg, W., Maeker, H., "Handbuch Der Physik" Vol. XXII, p. 291, Springer-Verlag OHG. Berlin, 1956. Gilmore, F.R., "Equilibrium Composition and Thermo-dynamic Properties of Air to 24,000° K." Project Rand (2) RMI543, August 1955.
- (3)
- Glockler, G., J. Chem. Phys. 22, 159 (1954). Gordon, J.S., "Thermodynamics of High Temperature Gas Mixtures, and Application to Combustion Problems," WADC (4)
- Tech. Rept. 57233, Dayton, Ohio, January 1957. Herzberg, G., "Spectra of Diatomic Molecules" Van Nostrand, New York, 1950. (5)
- Johnston, H.L., Belzer, J., Savedoff, L., "Thermodynamic Properties of CN Between 1° and 6000° K. Computed from (6) Spectroscopic Data" Ohio State Univ., Tech. Rept. 316-7 May 1953.
- (7) Lochte-Holtgreven, W., "Temperature, Its Measurement and Control in Science and Industry" Vol. II, Chap. 23, Reinhold, New York, 1955.

Table III. Ideal Gas Dimensionless Thermodynamic Functions											
Т, ° К.	N	0	А	С	N_2	O_2	NO	CO	CN	C_2	C_3
$-F^{o}/RT$											
4,000 5,000 6,000 7,000 8,000 9,000	$\begin{array}{r} 8.259 \\ 11.657 \\ 14.016 \\ 15.775 \\ 17.153 \\ 18.273 \\ 19.192 \end{array}$	15.979 18.031 19.486 20.590 21.467 22.187 22.794	$\begin{array}{c} 22.601 \\ 23.159 \\ 23.615 \\ 24.000 \\ 24.334 \\ 24.629 \\ 24.892 \end{array}$	$1.573 \\ 6.433 \\ 9.766 \\ 12.214 \\ 14.099 \\ 15.605 \\ 16.841$	29.202 30.140 30.918 31.580 32.168 32.691 33.161	$\begin{array}{c} 31.183\\ 32.183\\ 33.020\\ 33.731\\ 34.366\\ 34.947\\ 35.457\end{array}$	28.984 30.471 31.625 32.605 33.362 34.037 34.629	33.414 33.672 33.999 34.339 34.685 35.019 35.409	$18.890 \\ 22.282 \\ 24.730 \\ 26.609 \\ 28.111 \\ 29.360 \\ 30.415 \\$	$\begin{array}{r} 6.042 \\ 10.601 \\ 16.269 \\ 20.066 \\ 22.483 \\ 24.433 \\ 26.063 \end{array}$	9.957 16.916 21.919 24.715 28.742 31.237 33.335
10,000					H ⁰	/ RT		-			
4,000 5,000 6,000 7,000 8,000 9,000 10,000	$\begin{array}{c} 16.677\\ 13.885\\ 12.061\\ 10,794\\ 9.870\\ 9.168\\ 8.615 \end{array}$	$\begin{array}{c} 9.959 \\ 8.486 \\ 7.513 \\ 6.826 \\ 6.315 \\ 5.921 \\ 5.607 \end{array}$	2.500 2.500 2.500 2.500 2.500 2.500 2.500	$\begin{array}{c} 23.990 \\ 19.737 \\ 16.909 \\ 14.893 \\ 13.384 \\ 12.211 \\ 11.273 \end{array}$	4.172 4.244 4.299 4.338 4.380 4.420 4.464	4.439 4.558 4.652 4.725 4.796 4.866 4.928	6.975 6.495 6.186 5.958 5.787 5.667 5.575	$\begin{array}{c} 0.778 \\ 1.531 \\ 2.041 \\ 2.414 \\ 2.690 \\ 2.925 \\ 3.130 \end{array}$	$\begin{array}{c} 16.327\\ 14.160\\ 12.740\\ 11.679\\ 10.896\\ 10.280\\ 9.782 \end{array}$	29.497 24.595 21.326 19.004 17.281 15.957 14.914	33.861 28.939 25.770 23.557 21.856 20.514 19.403
					$E^{0}_{0}(Cal$./Mole)					
	112,535.0	58,985	0	170,300	0	0	21,479	-27,199.2	94,000	200,200	212,300

Figure 1. Plots of temperature vs. entropy functions in the 0.1 to 100 atm. for four air-carbon mixtures Lines of constant enthalpy shown with labels on the right hand side of the 0.1 atmosphere isobar

Lines of constant density indicated by ρ/ρ_0 , the ratios of the density of the mixture at the particular temperature and pressure to that of air at S.T.P.

- (8) Mulliken, R.S., Consultant to Aerosciences Laboratory, Philadelphia, Pa., private communication, January 1959.
- (9) Warren, W.R., "Laboratory Studies in Re-Entry Aerothermodynamics" General Electric Co. TIS-R59SD362; 10th Intern. Astronautical Congr., London, September 1959.
- (10) White, W.B., Johnson, S.M., Danzig, G.D., J. Chem. Phys. 28, 750-5 (1958).

RECEIVED for review November 9, 1959. Accepted April 18, 1960.

Work supported partially by Ballistic Missiles Division, U.S. Air Force, Contract AF-04-645-24. A complete set of tables is included in General Electric Document TIS-R59SD349. Copies are available, on request, from Documents Library, MSVD, General Electric Co., 3198 Chestnut St., Philadelphia 7, Pa.